Bose-Einstein Condensation II. Some exotic states

Sadhan K. Adhikari
IFT - Instituto de Física Teórica

UNESP - Universidade Estadual Paulista
São Paulo, Brazil

Topics

- I. Binding superfluid bosons and boson-fermion mixture without a trap in 3D: Quantum ball (QB)
- Attractive 2-body and repulsive 3-body interactions, Lee-Huang-Yang correction
- Non-dipolar and dipolar atoms
- Numerical and variational solution of mean-field model
- Quasi-elastic collision of QBs
- II. Stable dark soliton in dipolar BEC in 1D
- III. Unitarity and beyond-mean-field model: Vortex lattice
- Future perspectives

Why study trapless 3D BEC quantum ball?

- The study is expected to be more universal being solely controlled by the atomic interactions, no effect of binding trap.
- New studies: collision, multipole oscillation, Josephson tunneling, interference, vortex formation, spontaneous symmetry breaking, self trapping etc.

Three-body interaction K_{3}

- At small densities the effect of K_{3} is small and is usually neglected
- The quantum two-body interaction is related to the two-body t matrix/scattering length a
- The three-body term K_{3} is related to the threebody t matrix and is in general complex, the imaginary part corresponding to a loss of atoms due to molecule formation.
- A very small repulsive (with real part positive) K_{3} may have a significant effect on stabilizing a 3D BEC QB.

Lee-Huang-Yang beyond mean-field correction

Lee-Huang-Yang beyond mean-field correction

- The GP equation is valid in the weak-coupling limit.
- The next order correction(s) for repulsive interction involve higher orders in nonlinearity and can stabilize a quantum ball against collapse.

Lee-Huang-Yang Correction, PR 106, 1135 (1957)

Lee-Huang - Yang found the next order correction of the nonlinear term
$\mu(n, a)=4 \pi n a+2 \pi \alpha n^{3 / 2} a^{5 / 2}+\ldots, \quad \alpha=\frac{64}{3 \sqrt{\pi}}, \quad n=N|\psi|^{2}$
in dimensionless unit with $\hbar=m=1$. As $a \rightarrow \infty$, by
dimensional argument
(unitarity limit)
$\mu(n, a) \approx \frac{\hbar^{2}}{2 m L^{2}}=\eta n^{2 / 3}$
L is atomic separation, n density, and η a universal constant.
These two results can be combined into the analytic formula:
$\mu(n, a)=n^{2 / 3} f(x), \quad f(x)=4 \pi \frac{x+\alpha x^{5 / 2}}{1+\frac{\alpha}{2} x^{3 / 2}+\frac{4 \pi \alpha}{\eta} x^{5 / 2}}, \quad x=a n^{1 / 3}$

Beyond-mean-field model: Weak-coupling to unitarity crossover

Then we get the modified beyond - mean - field nonlinear Schrödinger equation
$\left[-\frac{1}{2} \nabla^{2}+V(r)+n^{2 / 3} f(x)\right] \psi(\mathrm{r}, t)=i \frac{\partial}{\partial t} \psi(\mathrm{r}, t)$

$$
f(x)=4 \pi \frac{x+\alpha x^{5 / 2}}{1+\frac{\alpha}{2} x^{3 / 2}+\frac{4 \pi \alpha}{\eta} x^{5 / 2}}, \quad x=a n^{1 / 3}, \quad n=N|\psi|^{2}
$$

where $f(x)$ is a universal function. We compare this function with a microscopic Hartree calculation, without Hartree approximation.

SKA+L. Salasnich, unpublished

f(x)

The three-body interaction and/or LHY correction can stabilize

- A BEC QB
- A dipolar BEC
- A binary BEC QB for attractive interspecies interaction
- A binary boson-fermion QB for attractive boson-fermion interaction

Experiments on QB formation

- H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Nature (London) 530, 194 (2016). \rightarrow Dipolar BEC with repulsive interaction.
- C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Science 359, 301 (2018) \rightarrow Quantum liquid droplets in a mixture of Bose-Einstein condensates.
- G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F.Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, arXiv:1710.10890 \rightarrow Selfbound quantum droplets in atomic mixtures

Generalized Gross-Pitaevskii (GP) Equation (mean-field equation for the BEC)

$$
i \hbar \frac{\partial \psi(\mathrm{r}, t)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{4 \pi \hbar^{2}|a| N}{m}|\psi|^{2}+\frac{\hbar N^{2} K_{3}}{2}|\psi|^{4}\right] \psi(\mathrm{r}, t)
$$

Dynamics
$=\mu \psi(\mathrm{r}, t) ;$
Stationary state

Dimensionless GP equation

$i \frac{\partial \psi(\mathrm{r}, t)}{\partial t}=\left[-\frac{1}{2} \nabla^{2}-4 \pi|a| N|\psi|^{2}+\frac{N^{2} K_{3}}{2}|\psi|^{4}\right] \psi(\mathrm{r}, t)$
Unit of length $l_{0}=1 \mu \mathrm{~m}$
Unit of time $t_{0}=\frac{m l_{0}^{2}}{\hbar}=0.11 \mathrm{~ms}$
Unit of energy $\varepsilon_{0}=\frac{\hbar^{2}}{m l_{0}{ }^{2}} \approx 10^{-30} \mathrm{~J}$
Unit of $K_{3}=\frac{\hbar l^{4}}{m}$
Results reported are for ${ }^{7} \mathrm{Li}$ atoms, e.g.,

$$
a=-27.4 a_{0}, \quad \mathrm{~m}=7 \mathrm{amu} .
$$

All results will be expressed in actual physical units.

Variational Approximation

Variationa 1 Gaussian Ansatz for wavefunction
$\psi(\mathrm{r})=\frac{\pi^{-3 / 4}}{w^{3 / 2}} \exp \left[-\frac{r^{2}}{2 w^{2}}\right], w->$ width of the QB
$\varepsilon(\mathrm{r})=\frac{|\nabla \psi(\mathrm{r})|^{2}}{2}-2 \pi N|a \| \psi(\mathrm{r})|^{4}+\frac{K_{3} N^{2}}{6}|\psi(\mathrm{r})|^{6}$,
$E=\int \varepsilon(\mathrm{r}) d \mathrm{r}=\frac{3}{4 w^{2}}-2 \pi N|a| \frac{\pi^{-3 / 2}}{2 \sqrt{2} w^{3}}+\frac{K_{3} N^{2}}{2} \frac{\pi^{-3}}{9 \sqrt{3} w^{6}}$,
Energy minimum determines width w :
$\frac{d E}{d w}=0,-->\quad \frac{1}{w^{3}}-\frac{4 \pi N|a|}{(2 \pi)^{3 / 2} w^{4}}+\frac{N^{2} K_{3}}{2} \frac{4}{9 \sqrt{3} \pi^{3} w^{7}}=0$

Tuning of short-range interaction by a Feshbach resonance

Binding mechanism of a 3D QB

- Problems in QB binding: weak attraction -> leakage \& strong attraction ->collapse
- Attraction provided by Feshbach technique to manipulate scattering length to a negative value
- Collapse stopped by a small three-body repulsion K_{3}. The energy is + infinity at the centre. This eliminates the possibility of a collapsed state.

Variational energy vs width of a QB

Stable and metastable states

$$
\begin{aligned}
& E(w)(J) \quad(a) \\
& -3 . \times 10^{-30} \\
& -6 . \times 10^{-30}
\end{aligned}
$$

Real-time propagation

Numerical Solution :
Real-time propagation:
$i \frac{\partial \psi(x, t)}{\partial t}=\left[-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} x^{2}+g|\psi|^{2}\right] \psi(x, t)$
Stationary state: Start with a solution of the linear equation ($g=0$). Propagate this solution for a small time $d t$ setting $g=d g$. As $d t \rightarrow 0, d g \rightarrow 0$ this yields the solution of the GP equation with $g=d g$. Repeat this iteration many times so that the solution of the GP equation with a finite g is obtained.

Non - stationary state : It is also possible to study dynamics.

Imaginary-time propagation

Numerical Solution :

Imaginary - time propagation for stationary ground state:
Set $t=-i \tau$,
$-\frac{\partial \psi(x, \tau)}{\partial \tau}=\left[-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} x^{2}+g|\psi|^{\prime}\right] \psi(x, \tau) \equiv E_{0} \psi(x, \tau)$
Time propagation yields $\psi(x, \tau)=\psi(x, 0) \exp \left(-E_{0} \tau\right)$.
An arbitrary initial state $\psi(x, 0)$ is usually a linear combination of all eigenstates n. As a result of time propagation all states decay. The excited states n decay much rapidly as they have larger energy $\left(E_{n}>E_{0}\right)$. So after some time only the ground state remains. Involves real algebra only.

Numerical Solution

- We solve the 3D GP equation by splitstep Crank-Nicolson method using both real- and imaginary-time propagation in Cartesian coordinates employing a space step 0.025 and a time step 0.0002 using Fortran and C programs published by us in Comput. Phys.
Commun.

Variational (line) and numerical (point)

 one-dimensional (1D) density

Dynamics of a $N=1500, K_{3}=3 \times 10^{-37} \mathrm{~m}^{6} / \mathrm{s}$ QB at $t=0$ changed to

$$
K_{3}=3(1-0.1 i) \times 10^{-37} \mathrm{~m}^{6} / \mathrm{s}
$$

Soliton in one dimension (1D)

- A 1 D soliton is a solitary wave that maintains its shape while travelling.
- It is generated from a balance between repulsive kinetic energy and attractive nonlinear interaction.
- Analytic soliton: Energy momentum conservation
- Elastic collision: Two 1D solitons can pass through each other in collision without a change in shape.

Soliton-soliton collision

Set the QBs in motion

Multiply stationary wavefunction by $\exp (i p x / \hbar)$

$$
\psi(\mathrm{r})=>\psi(\mathrm{r}) \exp (i p x / \hbar)
$$

where momentum

$$
p=m v
$$

with v the generated velocity

Numerically this is achieved by accurate(real-time)
simulation with small space and time steps over a large domain of space

Quasi Soliton in 3D

- No rigorous energy momentum conservation
- Inelastic collision: Solitonic nature is approximate and there is some change of shape of quantum balls during collision.

Collision of 2 QBs: 3 types of collision

- Large velocities: Elastic collision (small encounter time, kinetic energy of motion much larger than internal energies)
Frontal and angular collision and that with an impact parameter
- Small velocities: Inelastic collision and destruction of QBs, formation of bound QBs (large encounter time, kinetic energy of motion much smaller than internal energies)
- Intermediate velocities: Collision with some change in shape.

Collision of two ${ }^{7} \mathrm{Li}$ balls, with $\mathrm{N}=1500$,
 $$
\mathrm{K}_{3}=3 \times 10^{-37}(1-\mathrm{i}) \mathrm{m}^{6} / \mathrm{s}
$$

Moving in opposite directions along x axis with velocity $18 \mathrm{~cm} / \mathrm{s}$, at times
(a) $t=0,(b)=0.0057 \mathrm{~ms},(c)=0.0114 \mathrm{~ms},(\mathrm{~d})=0.017 \mathrm{~m}$
(e) $=0.0228 \mathrm{~ms},(\mathrm{f})=0.0285 \mathrm{~ms}$. The density on the con is 10^{10} atoms $/ \mathrm{cm}^{3}$ and unit of length is $\mu \mathrm{m}$.

Angular Collision of two ${ }^{7}$ Li balls, with $\mathrm{N}=$ 1500,

$$
\mathrm{K}_{3}=3 \times 10^{-37}(1-\mathrm{i}) \mathrm{m}^{6} / \mathrm{s}
$$

Angular collision with velocity $19 \mathrm{~cm} / \mathrm{s}$, at times (a) $\mathrm{t}=0,(\mathrm{~b})=0.0057 \mathrm{~ms},(\mathrm{c})=0.0114 \mathrm{~ms},(\mathrm{~d})=0.017 \mathrm{~m}$ (e) $=0.0228 \mathrm{~ms},(\mathrm{f})=0.0285 \mathrm{~ms}$. The density on the con is 10^{10} atoms $/ \mathrm{cm}^{3}$ and unit of length is $\mu \mathrm{m}$.

Bouncing of a ${ }^{7}$ Li ball, with $\mathrm{N}=1500$, $\mathrm{K}_{3}=3 \times 10^{-37}(1-\mathrm{i}) \mathrm{m}^{6} / \mathrm{s}$, against a hard rigid noninteracting wall

Molecule formation at small velocities

Quantum balls with
$\mathrm{N}=1500 . \mathrm{K}_{3}=3 \times 10^{-37}(1-0.05 \mathrm{i}) \mathrm{m}^{6} / \mathrm{s}$ placed at $x=3.2 /-3.2$ micron at $t=0$ and moving with velocity $0.45 \mathrm{~cm} / \mathrm{s}$

Dipolar interaction: Atoms and molecules

(c)

$$
-11
$$

(d)

(a)

Cigar shaped (attraction)
(b) Disk shaped (repulsion)

Static Dipole-Dipole Interactions

Magnetic dipole-dipole interaction: the magnetic moments of the atoms are aligned with a strong magnetic field [Goral, Rzazewski, and Pfau, 2000]

Electrostatic dipole-dipole interaction: (i) permanent electric moments (polar molecules); (ii) electric moments induced by a strong electric field E [Yi and You 2000; Santos, Shlyapnikov, Zoller and Lewenstein 2000]

$$
U_{d d}(r)=\frac{\alpha^{2}}{4 \pi \varepsilon_{0}}\left[\frac{1-3 \cos ^{2} \theta}{r^{3}}\right]
$$

$$
a_{d d}=\frac{\mu_{0} \mu^{2} m}{12 \pi \hbar^{2}}
$$

Static Dipole-Dipole Interactions

Magnetic dipole-dipole interaction: the magnetic moments of the atoms are aligned with a strong magnetic field [Goral, Rzazewski, and Pfau, 2000]

Change of shape of BEC as the atomic interaction is reduced in a dipolar BEC

BECs of ${ }^{52} \mathrm{Cr}$ (Griesmaier/Pfau 2005), ${ }^{164}$ Dy (Lu/Lev 2011), ${ }^{168}$ Er (Ferlaino 2012)

Dipole moment μ of ${ }^{52} \mathrm{Cr}=6 \mu_{\mathrm{B}}$	$\mathrm{a}_{\mathrm{dd}}=15.3 \mathrm{a}_{0}$
Dipole moment μ of ${ }^{168} \mathrm{Er}=7 \mu_{\mathrm{B}}$	$\mathrm{a}_{\mathrm{dd}}=66.7 \mathrm{a}_{0}$
Dipole moment μ of ${ }^{164 \mathrm{Dy}=10 \mu_{\mathrm{B}}}$	$\mathrm{a}_{\mathrm{dd}}=132.7 \mathrm{a}_{0}$
Dipole moment μ of ${ }^{87} \mathrm{Rb}=1 \mu_{\mathrm{B}}$	$\mathrm{a}_{\mathrm{dd}}=0.69 \mathrm{a}_{0}$
$\mu_{\mathrm{B}}=$ Bohr Magneton	$\mathrm{a}_{0}=$ Bohr radius
	$a_{d d}=\frac{\mu_{0} \mu^{2} m}{12 \pi h^{2}}$

Generalized Gross-Pitaevskii (GP) Equation (mean-field equation for the BEC)

$$
\begin{aligned}
& i \hbar \frac{\partial \psi(\mathrm{r}, t)}{\partial t}=-\left[\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{4 \pi \hbar^{2} a N}{m}|\psi|^{2}-\frac{\hbar N^{2} K_{3}}{2}|\psi|^{4}\right] \psi(\mathrm{r}, t) \\
& +\frac{3 \hbar^{2} a_{d d} N}{m} \int U_{d d}\left(\mathrm{r}-\mathrm{r}^{\prime}\right)\left|\psi\left(\mathrm{r}^{\prime}, t\right)\right|^{2} d \mathrm{r}^{\prime} \psi\left(\mathrm{r}^{\prime}, t\right) \\
& +\frac{2 \hbar^{2}}{m} \alpha \pi a^{5 / 2} N^{3 / 2}|\psi|^{3} \psi ;
\end{aligned} a_{d d}=\frac{\mu_{0} \mu^{2} m}{12 \pi \hbar^{2}}
$$

Dynamics
$=\mu \psi(\mathrm{r}, \mathrm{t}) ;$
Stationary state

Dimensionless Gross-Pitaevskii (GP) Equation for attractive interaction

$i \frac{\partial \psi(\mathrm{r}, t)}{\partial t}=-\left[\frac{1}{2} \nabla^{2}+4 \pi|a| N|\psi|^{2}-\frac{N^{2} K_{3}}{2}|\psi|^{4}\right] \psi(\mathrm{r}, t)$
$+3 a_{d d} N \int U_{d d}\left(\mathrm{r}-\mathrm{r}^{\prime}\right)\left|\psi\left(\mathrm{r}^{\prime}, t\right)\right|^{2} d \mathrm{r}^{\prime} \psi\left(\mathrm{r}^{\prime}, t\right) ;$
Dynamics
$=\mu \psi(\mathrm{r}, t) ;$
Stationary state

Parameters:

- Work with ${ }^{52} \mathrm{Cr}$ atom with magnetic moment $\mu=6 \mu_{\text {B }}$
- $a=-20 a_{0}, a_{\mathrm{dd}}=15.3 a_{0}$
- Unit of length $1 \mu \mathrm{~m}$
- Unit of time 0.82 ms

Critical number of atoms

Energy and size of droplets

Density of the droplets

3D Isodensity contour of the QB

${ }^{52} \mathrm{Cr}$ QB with $\mathrm{a}=-20 \mathrm{a}_{0}$ for: (a) $\mathrm{N}=10000, \mathrm{~K}_{3}=10^{-37} \mathrm{~m}^{6} / \mathrm{s}$,
(b) $\mathrm{N}=3000, \mathrm{~K}_{3}=10^{-37} \mathrm{~m}^{6} / \mathrm{s}$, (c) $\mathrm{N}=10000, \mathrm{~K}_{3}=10^{-38}$
$\mathrm{m}^{6} / \mathrm{s}$, and (d) $\mathrm{N}=3000, \mathrm{~K}_{3}=10^{-38} \mathrm{~m} / \mathrm{s}$.

QB-QB Collision

- Numerical simulation in 3D demonstrates quasi-elastic frontal collision at high velocities.
- Molecule formation at low velocities along polarization direction z .
- Bouncing back at low velocities along direction x .

$$
v=38
$$

Boson-fermion quantum ball

- Repulsive or attractive boson-boson interaction and fermion-fermion Pauli repulsion
- Attractive boson-fermion interaction
- A repulsive three-boson interaction and/or LHY correction for repulsive two-boson interaction will stop collapse

Trapped boson-fermion mixture :

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m_{1}} \nabla^{2}+V+\frac{4 \pi \hbar^{2} a_{1} N_{1}}{m_{1}}\left|\psi_{1}\right|^{2}+\frac{2 \hbar^{2}}{m_{1}} \alpha \pi a_{1}^{5 / 2} N_{1}^{3 / 2}\left|\psi_{1}\right|^{3}\right.} \\
& \left.\quad+\frac{\hbar N_{1}^{2} K_{3}}{2}\left|\psi_{1}\right|^{4}+\frac{2 \pi \hbar^{2} a_{12} N_{2}}{m_{R}}\left|\psi_{2}\right|^{2}\right] \psi_{1}(\mathrm{r}, t)=i \hbar \frac{\partial}{\partial t} \psi_{1}(\mathrm{r}, t)
\end{aligned}
$$

$$
\left[-\frac{\hbar^{2}}{8 m_{2}} \nabla^{2}+V+\frac{\hbar^{2}\left(3 \pi^{2} N_{2}\left|\psi_{2}\right|^{2}\right)^{2 / 3}}{2 m_{2}}\right.
$$

$$
\left.+\frac{2 \pi \hbar^{2} a_{12} N_{1}}{m_{R}}\left|\psi_{1}\right|^{2}\right] \psi_{2}(\mathrm{r}, t)=i \hbar \frac{\partial}{\partial t} \psi_{2}(\mathrm{r}, t)
$$

Boson-fermion quantum ball for attractive boson-boson interaction
 ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ mixure

Boson-fermion quantum ball for repulsive

 boson-boson interaction $\mathrm{W} \rightarrow$ with LHY

One-dimensional dark soliton

- Like the first excited state of harmonic oscillator

1D dipolar solitons with repulsive contact interactions (a) $\downarrow x$

$\int y$

Stable dark soliton of a dipolar BEC

 $1000{ }^{164}$ Dy atoms $a_{\mathrm{dd}}=132.7 a_{0}, a=80 a_{0}, l=1 \mu \mathrm{~m}$(a)

20
40
60
$-4 \stackrel{4}{\square}$
(b)
$-60 \quad-40 \quad-20$
020
40
60

SKA Phys. Rev. A 89 (2014) 043615

$$
a_{\mathrm{dd}}(\mathrm{Dy})=132.7 a_{0}, a_{\mathrm{dd}}(\mathrm{Er})=66.7 a_{0}
$$

Snake instability of dark soliton in a fermion gas

Pitaevskii, Trento

Snake instability of dark optical soliton

Yuri Kivshar, Canberra

Collision of two dark-in-bright stable dipolar solitons

Velocity $=2.4 \mathrm{~mm} / \mathrm{s}, t_{0}=2.6 \mathrm{~ms}$,
1000^{164} Dy atoms, $a_{\mathrm{dd}}=132.7 a_{0}$
$a=80 a_{0}, l=1 \mu \mathrm{~m}$

Create a dark soliton in a laboratory:

 From a phase-imprinted bright soliton of $1000{ }^{164} \mathrm{Dy}$$$
\text { atoms with } a=80 a_{0} \text { and } l=1 \mu \mathrm{~m}
$$

Stability of dark-in-bright soliton of $1000{ }^{164}$ Dy atoms with $a=80 a_{0}$. The initial state was moved to $z=-2 \mu \mathrm{~m}$.

Unitarity achieved in BEC

P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A.

Cornell, and D. S. Jin, Nature Phys. 10, 116 (2014)
"We present time-resolved measurements of the momentum distribution of a Bose-condensed gas that is suddenly jumped to unitarity,
where contrary to expectation, we observe that the gas lives long enough to permit the momentum to evolve to a quasi-steady-state distribution, consistent with universality, while remaining degenerate."

Rapidly rotating BEC

Rotating BEC, vortex-lattice formation dynamics. We assume that the trap rotates with a fixed angular frequency around z axis.
$\left[-\frac{1}{2} \nabla_{\rho}{ }^{2}-\frac{1}{2} \frac{\partial^{2}}{\partial z^{2}}+\frac{1}{2}\left(\gamma \rho^{2}+\lambda z^{2}\right)-\ell_{z} \Omega+4 \pi a N|\psi|^{2}\right] \psi=i \frac{\partial \psi}{\partial t}$
We assume that the trap rotates with a fixed angular frequency Ω around z axis. In the rotating frame the original Hamiltonia n changes to $H^{\prime}=H-\ell_{z} \Omega$, viz. Landau + Lifshitz, Mechanics, where $\ell_{z}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}\right)$.

Vortex Lattice in weak-coupling to unitarity crossover

Concluding remarks

- I. A quantum ball (dipolar, boson, boson-boson, boson-fermion) can be stabilized for a small repulsive three-body interaction and/or LHY correction
- II. Robust stable dark soliton in dipolar BEC
- III. Vortex lattice in BEC at unitarity
- IV. Further experiments expected in the future
- Thank you for your attention

